changing structure

This commit is contained in:
2022-05-10 14:27:43 +03:00
parent 6dfe72a3d9
commit c2ddfc0536
23 changed files with 144 additions and 154 deletions

View File

@@ -0,0 +1,199 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import plotly.express as px
class agrigateFig():
def __init__(self,data=[],needDraw=False ,subplot_titles=None):
self.data=data
self.ans=self.getAgrPlt()
if needDraw:
self.subplot_titles=subplot_titles
self.fig=coreDraw(self.ans,True,self.subplot_titles)
def getAgrPlt(self):
count=0
ans=[]
for i in self.data:
count=count+1
if type(i)==list:
for g in i:
for j in g.figDict:
ans.append(j)
ans[-1]['row']=count
else:
for j in i.figDict:
ans.append(j)
ans[-1]['row']=count
return ans
class corePlt():
def __init__(self, params={
'vtype':'',
'df':pd.DataFrame(),
'row':1,
'col':1,
'name':''
}):
self.vtype=params['vtype']
self.df=params['df']
self.row=params['row']
self.col=params['col']
self.name=params['name']
if 'colorType' in params.keys():
self.colorType=params['colorType']
class coreDraw():
def __init__(self, data=[],needShow=False):
self.data=self.getPlts(data)
self.needShow=needShow
self.ans=self.getAns()
def getBarColorList(self,l,colorType):
if colorType=='diffAbs':
ans=['green']
for i in range(1,len(l)):
if abs(l[i])>abs(l[i-1]):
ans.append('green')
else:
ans.append('red')
elif colorType=='diff':
ans=['green']
for i in range(1,len(l)):
if (l[i])>(l[i-1]):
ans.append('green')
else:
ans.append('red')
elif colorType=='normal':
ans=[]
for i in range(len(l)):
ans.append('gray')
return ans
def getPlts(self, data):
ans=None
if type(data)==list:
ans=[]
for i in data:
ans.append(corePlt(i))
else:
ans=[corePlt(data)]
return ans
def getAns(self):
'''
data list
vtype
df
row=1
col=1
name
'''
ans=None
maxRow=1
maxCol=1
for i in self.data:
if i.row > maxRow:
maxRow =i.row
if i.col > maxCol:
maxCol =i.col
fig = make_subplots(
rows=maxRow,
cols=maxCol,
shared_xaxes=True,
vertical_spacing=0.02,
shared_yaxes=True,
horizontal_spacing=0.02,
#column_widths=[]
)
fig.update_layout(xaxis_rangeslider_visible=False)
fig.update_layout(barmode='relative')
for i in self.data:
if i.vtype=='Scatter':
fig.add_trace(go.Scatter(x=i.df['date'],y=i.df['value'],name=i.name), row=i.row, col=i.col)
elif i.vtype=='OCHL':
fig.add_trace(go.Candlestick(
x=i.df['date'],
open=i.df['open'],
high=i.df['high'],
low=i.df['low'],
close=i.df['close'],
name=i.name),
row=i.row, col=i.col
)
elif i.vtype=='Bars':
for j in i.df.keys():
if j!='date':
try:
colorType=i.colorType
except:
colorType='normal'
colors=self.getBarColorList(i.df[j],colorType)
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors))
ans=fig
if self.needShow:
plotly.offline.iplot(fig)
return ans

View File

@@ -0,0 +1,138 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
class CoreMath:
def __init__(self, base_df, params={
'dataType':'ohcl',
'action': None,
'actionOptions':{}
}
):
self.base_df=base_df.reset_index(drop=True)
self.params=params
if self.params['dataType']=='ohcl':
self.col=self.base_df[self.params['actionOptions']['valueType']]
elif self.params['dataType']=='series':
self.col=self.base_df
self.ans=self.getAns()
def getAns(self):
ans=None
if self.params['action']=='findExt':
ans = self.getExtremumValue()
elif self.params['action']=='findMean':
ans = self.getMeanValue()
elif self.params['action']=='findSTD':
ans=self.getSTD()
return ans
def getExtremumValue(self):
ans=None
'''
actionOptions:
'extremumtype':
'min'
'max'
'valueType':
'open'
'close'
'high'
'low'
'''
if self.params['actionOptions']['extremumtype']=='max':
ans=max(self.col)
if self.params['actionOptions']['extremumtype']=='min':
ans=min(self.col)
return ans
def getMeanValue(self):
'''
actionOptions:
'MeanType':
'MA'
'SMA'
'EMA'
'WMA'
--'SMMA'
'valueType':
'open'
'close'
'high'
'low'
'window'
'span'
'weights'
'''
ans=None
if self.params['actionOptions']['MeanType']=='MA':
ans = self.col.mean()
if self.params['actionOptions']['MeanType']=='SMA':
ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
#ans=self.col.rolling(window=self.params['actionOptions']['window']).mean().to_list()
if self.params['actionOptions']['MeanType']=='EMA':
ans=self.col.ewm(span=self.params['actionOptions']['span'], adjust=False).mean().to_list()
if self.params['actionOptions']['MeanType']=='WMA':
try:
weights=self.params['actionOptions']['weights']
except KeyError:
weights=np.arange(1,self.params['actionOptions']['window']+1)
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False).to_list()
return(ans)
def getSTD(self):
'''
actionOptions:
window
'''
ans=None
try:
window=self.params['actionOptions']['window']
ans=np.asarray([])
for i in range(len(self.col)-window+1):
ans=np.append(ans,np.std(self.col[i:i+window], ddof=1))
except:
#window = len(self.col)
ans=np.std(self.col, ddof=1)
return ans

View File

@@ -0,0 +1,182 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
import CoreTraidMath
import CoreDraw
init_notebook_mode()
class ADXI:
def __init__(self, base_df, options={
'dataType':'ohcl',
}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
#self.norm_df=self.nornalize()
#self.col=col
#self.npCol=np.asarray(self.norm_df[self.col], dtype=np.float32)
#self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getDM(self):
#m,p=self.getMP()
dm_m=np.asarray([])
dm_p=np.asarray([])
tr=np.asarray([])
for i in range(1,self.base_df.shape[0]):
if (self.base_df['open'][i]>=
self.base_df['open'][i-1]):
dm_p=np.append(dm_p,self.base_df['open'][i]-self.base_df['open'][i-1])
else:
dm_p=np.append(dm_p,0)
if (self.base_df['close'][i]<=self.base_df['close'][i-1]):
dm_m=np.append(dm_m,self.base_df['close'][i-1]-self.base_df['close'][i])
else:
dm_m=np.append(dm_m,0)
tr=np.append(tr,
max(self.base_df['close'][i-1],self.base_df['high'][i])-
min(self.base_df['close'][i-1],self.base_df['low'][i]))
setattr(self,'dm_m',dm_m)
setattr(self,'dm_p',dm_p)
setattr(self,'tr',tr)
return dm_m,dm_p
def getEMA(self,Col):
ser = pd.Series(Col, copy=False)
op={'dataType':'series',
'action':'findMean',
'actionOptions':{'MeanType':'EMA','span':10}
}
ans=np.asarray(CoreTraidMath.CoreMath(ser,op).ans)
#print(ans)
#ans = np.asarray(ser.ewm(span=40,adjust=False).mean().to_list())
#print(ans)
#return(np.asarray(ser.ewm(span=40,adjust=False).mean().to_list()))
return ans
def getDI(self):
dm,dp=self.getDM()
dip=self.getEMA(dp/self.tr)
dim=self.getEMA(dm/self.tr)
return dim,dip
def getAns(self):
dim,dip=self.getDI()
np.seterr(invalid='ignore')
col=abs(np.true_divide((dim-dip),(dim+dip)))
setattr(self,'col',col)
adx=self.getEMA(col)
ans={
'DIM':dim*100,
'DIP':dip*100,
'ADX':adx*100
}
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['ADX'],'date':self.base_df['date'].to_list()[1:]}) ,
'row':row,
'col':1,
'name':'SenkouSpanB'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['DIP'],'date':self.base_df['date'].to_list()[1:]}) ,
'row':row,
'col':1,
'name':'+DI'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['DIM'],'date':self.base_df['date'].to_list()[1:]}) ,
'row':row,
'col':1,
'name':'-DI'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,114 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class Alligator:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getMA(self,keyAns):
ans=None
op={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{'MeanType':self.options[keyAns]['MeanType'],
'valueType':self.options['valueType'],
'window':self.options[keyAns]['window']}
}
ans=CoreTraidMath.CoreMath(self.base_df,op).ans
return ans
def getAns(self):
ans={'Jaw':{},
'Teeth':{},
'Lips':{}
}
for i in ans.keys():
ma=self.getMA(i)
ans[i]['y']=ma[:len(ma)-self.options[i]['shift']]
ans[i]['x']=self.base_df['date'][self.options[i]['window']+self.options[i]['shift']-1:]
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
#row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['Jaw']['y'],'date':self.ans['Jaw']['x']}) ,
'row':row,
'col':1,
'name':'Jaw'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['Teeth']['y'],'date':self.ans['Teeth']['x']}) ,
'row':row,
'col':1,
'name':'Teeth'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['Lips']['y'],'date':self.ans['Lips']['x']}) ,
'row':row,
'col':1,
'name':'Lips'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,108 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class IDC:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getSMA(self,windowSMA):
return np.convolve(self.npCol, np.ones(int(windowSMA)), 'valid') / int(windowSMA)
def getAns(self):
ans={
'MaxExt':[],
'MinExt':[],
'x':[]
}
opMin={'dataType':'ohcl',
'action':'findExt',
'actionOptions':{'extremumtype':'min','valueType':'low'}
}
opMax={'dataType':'ohcl',
'action':'findExt',
'actionOptions':{'extremumtype':'max','valueType':'high'}
}
for i in range(self.options['window'],len(self.base_df)-self.options['shift']+1):
ans['MaxExt'].append(CoreTraidMath.CoreMath(self.base_df[i-self.options['window']:i],opMax).ans)
ans['x'].append(self.base_df['date'][i-1+self.options['shift']])
ans['MinExt'].append(CoreTraidMath.CoreMath(self.base_df[i-self.options['window']:i],opMin).ans)
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
#row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['MaxExt'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'MaxExt'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['MinExt'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'MinExt'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,124 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class Envelopes:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getAns(self):
ans={
'MainEnv':[],
'PlusEnv':[],
'MinusEnv':[],
'x':[]
}
dictResp={}
dictResp['MeanType']=self.options['MeanType']
dictResp['valueType']=self.options['valueType']
try:
dictResp['window'] = self.options['window']
dictResp['span'] = self.options['window']
except:
pass
op={'dataType':'ohcl',
'action':'findMean',
'actionOptions':dictResp
}
if dictResp['MeanType']=='SMA':
y=CoreTraidMath.CoreMath(self.base_df,op).ans
ans['MainEnv']=y[:len(y)-self.options['shift']]
ans['PlusEnv']=ans['MainEnv']*(1+self.options['kProc']/100)
ans['MinusEnv']=ans['MainEnv']*(1-self.options['kProc']/100)
ans['x']=self.base_df['date'][self.options['window']-1+self.options['shift']:]
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
#row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['MainEnv'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'MainEnv'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['PlusEnv'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'PlusEnv'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['MinusEnv'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'MinusEnv'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,108 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
import Ind_Alligator
class Gator:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getAns(self):
req=Ind_Alligator.Alligator(self.base_df,self.options).ans
#self.req=req
'''
ans={'Jaw-Teeth':{'y':[],'x':[]},
'Teeth-Lips':{'y':[],'x':[]},
}
JawTeethIter=self.options['Jaw']['window']+self.options['Jaw']['shift']-self.options['Teeth']['window']-self.options['Teeth']['shift']
TeethLipsIter=self.options['Teeth']['window']+self.options['Teeth']['shift']-self.options['Lips']['window']-self.options['Lips']['shift']
#print(TeethLipsIter)
for i in range(len(req['Jaw']['y'])):
ans['Jaw-Teeth']['y'].append(abs(req['Jaw']['y'][i]-req['Teeth']['y'][JawTeethIter+i]))
ans['Jaw-Teeth']['x']=req['Jaw']['x']
for i in range(len(req['Teeth']['y'])):
ans['Teeth-Lips']['y'].append(-abs(req['Teeth']['y'][i]-req['Lips']['y'][TeethLipsIter+i]))
ans['Teeth-Lips']['x']=req['Teeth']['x']
'''
ans={'Jaw-Teeth':[],
'Teeth-Lips':[],
'x':[]
}
JawTeethIter=self.options['Jaw']['window']+self.options['Jaw']['shift']-self.options['Teeth']['window']-self.options['Teeth']['shift']
TeethLipsIter=self.options['Teeth']['window']+self.options['Teeth']['shift']-self.options['Lips']['window']-self.options['Lips']['shift']
for i in range(len(req['Jaw']['y'])):
ans['Jaw-Teeth'].append(abs(req['Jaw']['y'][i]-req['Teeth']['y'][JawTeethIter+i]))
ans['Teeth-Lips'].append(-abs(req['Teeth']['y'][JawTeethIter+i]-req['Lips']['y'][JawTeethIter+TeethLipsIter+i]))
ans['x']=req['Jaw']['x']
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Bars',
'df':pd.DataFrame(
{'Jaw-Teeth':self.ans['Jaw-Teeth'],
'Teeth-Lips':self.ans['Teeth-Lips'],
'date':self.ans['x'].to_list()}
) ,
'row':row,
'col':1,
'name':'Gator',
'colorType':'diffAbs'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,188 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
import CoreDraw
init_notebook_mode()
import CoreTraidMath
import plotly.express as px
class Ishimoku:
def __init__(self, base_df, options={
'dataType':'ohcl',
'short':9,
'middle':26,
'long':52,
'backstep':26,
'forwardstep':26
},needFig=False,showOnlyIndex=True,drawFig=False
):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getTankenSen(self):
y=np.asarray([])
x=np.asarray([])
for i in range(self.options['short'],self.base_df.shape[0]):
maxValue=max(self.base_df['high'][i-self.options['short']:i])
minValue=min(self.base_df['low'][i-self.options['short']:i])
y=np.append(y,(maxValue+minValue)*0.5)
x=np.append(x,self.base_df['date'][i])
#ts.append(max(self.base_df[self.options['colName']['high']][i-self.options['short']:i]))
ans={'y':y,'x':x}
return(ans)
def getKijunSen(self):
y=np.asarray([])
x=np.asarray([])
for i in range(self.options['middle'],self.base_df.shape[0]):
maxValue=max(self.base_df['high'][i-self.options['middle']:i])
minValue=min(self.base_df['low'][i-self.options['middle']:i])
y=np.append(y,(maxValue+minValue)*0.5)
x=np.append(x,self.base_df['date'][i])
#ts.append(max(self.base_df[self.options['colName']['high']][i-self.options['short']:i]))
ans={'y':y,'x':x}
return(ans)
def getChinkoSpan(self):
y=np.asarray(self.base_df['close'][self.options['backstep']:])
x=np.asarray(self.base_df['date'][:self.base_df.shape[0]-self.options['backstep']])
ans={'y':y,'x':x}
return(ans)
def getSenkouSpanA(self, data):
y=np.asarray([])
x=np.asarray([])
shift=len(data['TankenSen']['y'])-len(data['KijunSen']['y'])
for i in range(len(data['KijunSen']['x'])-self.options['forwardstep']):
y=np.append(y,(data['KijunSen']['y'][i]+data['TankenSen']['y'][i+shift])*0.5)
x=np.append(x,data['KijunSen']['x'][i+self.options['forwardstep']])
ans={'y':y,'x':x}
return(ans)
def getSenkouSpanB(self):
y=np.asarray([])
x=np.asarray([])
for i in range(self.options['long'],self.base_df.shape[0]-self.options['forwardstep']):
maxValue=max(self.base_df['high'][i-self.options['long']:i])
minValue=min(self.base_df['low'][i-self.options['long']:i])
y=np.append(y,(maxValue+minValue)*0.5)
x=np.append(x,self.base_df['date'][i+self.options['forwardstep']])
#ts.append(max(self.base_df[self.options['colName']['high']][i-sel
ans={'y':y,'x':x}
return(ans)
def getAns(self):
ans={}
ans['TankenSen']=self.getTankenSen()
ans['KijunSen']=self.getKijunSen()
ans['ChinkoSpan']=self.getChinkoSpan()
ans['SenkouSpanA']=self.getSenkouSpanA(ans)
ans['SenkouSpanB']=self.getSenkouSpanB()
#print(ans)
return(ans)
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['TankenSen']['y'],'date':self.ans['TankenSen']['x']}) ,
'row':1,
'col':1,
'name':'TankenSen'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['KijunSen']['y'],'date':self.ans['KijunSen']['x']}) ,
'row':1,
'col':1,
'name':'KijunSen'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['ChinkoSpan']['y'],'date':self.ans['ChinkoSpan']['x']}) ,
'row':1,
'col':1,
'name':'ChinkoSpan'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['SenkouSpanA']['y'],'date':self.ans['SenkouSpanA']['x']}) ,
'row':1,
'col':1,
'name':'SenkouSpanA'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['SenkouSpanB']['y'],'date':self.ans['SenkouSpanB']['x']}) ,
'row':1,
'col':1,
'name':'SenkouSpanB'
})
if not showOnlyIndex:
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
#print(ans)
return ans

View File

@@ -0,0 +1,104 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class LRI:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.col=self.base_df[self.options['valueType']]
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getAns(self):
ans=None
l=np.asarray(list(range(len(self.col))))
k,b=np.polyfit(l,self.col,1)
setattr(self,'k',k)
setattr(self,'b',b)
b1=b+self.options['k']*pow(1-k*k,0.5)
b2=b-self.options['k']*pow(1-k*k,0.5)
ans={
'LRI':l*k+b,
'LRI+':l*k+b1,
'LRI-':l*k+b2,
'x':self.base_df['date']
}
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
#row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['LRI'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'LRI'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['LRI+'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'LRI+'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['LRI-'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'LRI-'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,88 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class ISTD:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getAns(self):
ans=None
try:
op={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
x=self.base_df['date'][self.options['window']-1:].to_list()
except:
op={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType']}
}
x=self.base_df['date'].to_list()
y= CoreTraidMath.CoreMath(self.base_df,op).ans
ans={'y':y,'x':x}
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['y'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'ISTD'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,147 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class Stochastic:
def __init__(self, base_df, options={
'dataType':'ohcl',
'window':14,
'windowSMA':5
}, needFig=False,showOnlyIndex=True,drawFig=False
):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getKn(self):
ans={}
y=np.asarray([])
x=np.asarray([])
for i in range(self.options['window'],self.base_df.shape[0]):
minValue=min(self.base_df['low'][i-self.options['window']:i])
maxValue=max(self.base_df['high'][i-self.options['window']:i])
y=np.append(y,(self.base_df['close'][i-1]-minValue)/(maxValue-minValue))
x=np.append(x,self.base_df['date'][i-1])
#print(i,minValue,maxValue,self.base_df[self.options['colName']['close']][i],y[-1])
ans['y'],ans['x']=y,x
return ans
def getSMA(self,col):
ans=None
ser = pd.Series(col, copy=False)
op={'dataType':'series',
'action':'findMean',
'actionOptions':{'MeanType':'SMA','window':self.options['windowSMA']}
}
ans=np.asarray(CoreTraidMath.CoreMath(ser,op).ans)
return ans
#return np.convolve(col, np.ones(self.options['windowSMA']), 'valid') /self.options['windowSMA']
def getDn(self,col):
ans={}
y=np.asarray([])
x=np.asarray([])
for i in range(self.options['windowSMA'],len(col['y'])):
y=np.append(y, self.getSMA(col['y'][i-self.options['windowSMA']:i]))
x=np.append(x,col['x'][i])
ans['y'],ans['x']=y,x
return ans
def getAns(self):
ans={}
ans['Kn']=self.getKn()
ans['Dn']=self.getDn(ans['Kn'])
#print(ans)
return(ans)
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['Kn']['y'],'date':self.ans['Kn']['x']}) ,
'row':row,
'col':1,
'name':'Kn'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['Dn']['y'],'date':self.ans['Dn']['x']}) ,
'row':row,
'col':1,
'name':'Dn'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,109 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import CoreTraidMath
import CoreDraw
class BB:
def __init__(self, base_df,options={}, needFig=False,showOnlyIndex=True,drawFig=False):
self.base_df=base_df.reset_index(drop=True)
self.options=options
self.ans=self.getAns()
if needFig:
self.fig=self.pltShow(showOnlyIndex,drawFig)
def getAns(self):
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(self.base_df,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(self.base_df,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(self.base_df['date'][self.options['window']-1:].to_list())
return ans
def pltShow(self,showOnlyIndex,drawFig):
ans=None
req=[]
row=1
if not showOnlyIndex:
#row=2
req.append({
'vtype':'OCHL',
'df':self.base_df,
'row':1,
'col':1,
'name':'OHCL'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['BB'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'BB'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['pSTD'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'pSTD'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['mSTD'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'mSTD'
})
self.figDict=req
ans = CoreDraw.coreDraw(req,drawFig)
return ans

View File

@@ -0,0 +1,2 @@
Ind_Envelopes - SMA only