moved things to a new place !

This commit is contained in:
2024-03-15 20:15:46 +01:00
parent 5f8cea85ce
commit 8d8d102a14
28 changed files with 3967 additions and 208 deletions

View File

@@ -15,7 +15,7 @@ import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
#import mplfinance as mpf
import plotly
#import plotly.plotly as py
@@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import market_trade.core.CoreTraidMath
import CoreTraidMath
import plotly.express as px
@@ -79,9 +79,10 @@ class corePlt():
class coreDraw():
def __init__(self, data=[],needShow=False):
def __init__(self, data=[],needShow=False,subplot_titles={}):
self.data=self.getPlts(data)
self.needShow=needShow
self.subplot_titles=subplot_titles
self.ans=self.getAns()
@@ -156,11 +157,11 @@ class coreDraw():
rows=maxRow,
cols=maxCol,
shared_xaxes=True,
vertical_spacing=0.02,
vertical_spacing=0.1,
shared_yaxes=True,
horizontal_spacing=0.02,
#horizontal_spacing=0.02,
#column_widths=[]
subplot_titles=self.subplot_titles
)
@@ -188,7 +189,7 @@ class coreDraw():
except:
colorType='normal'
colors=self.getBarColorList(i.df[j],colorType)
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors))
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors),row=i.row, col=i.col)
@@ -196,4 +197,4 @@ class coreDraw():
ans=fig
if self.needShow:
plotly.offline.iplot(fig)
return ans
return ans

View File

@@ -1,93 +1,102 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
class CoreMath:
def __init__(self, base_df, params=None):
"""
Этот класс нужен для того, чтобы проводить операции над датафреймами
:param base_df: pandas.DataFrame , датафрейм, над которым будут проведены математические операции
:param params: словарь, который определяет какие данные пришли в класс, и что с ними нужно делать, и как
"""
if params is None:
params = {
'dataType': 'ohcl',
'action': None,
'actionOptions': {}
}
# нужно переопределить индексы, потому что нам ничего не известно об индексации входного файла
self.base_df = base_df.reset_index(drop=True)
self.params = params
# Эта часть определяет с какой частью данных нужно проводить вычисления
def __init__(self, base_df, params={
'dataType':'ohcl',
'action': None,
'actionOptions':{}
}
):
self.base_df=base_df.reset_index(drop=True)
self.params=params
if self.params['dataType']=='ohcl':
self.col=self.base_df[self.params['actionOptions']['valueType']]
elif self.params['dataType']=='series':
self.col=self.base_df
# собственно производим вычисления
self.ans=self.getAns()
def getAns(self):
"""
Эта функция занимается собственно рутингом вычислений, в зависимости от параметров
:return: ans, неопределенный тип данных, в заивисимости от action
"""
ans=None
# в зависимости от параметра action производятся соответсвующие действия
if self.params['action']=='findExt':
ans = self.getExtremumValue()
elif self.params['action']=='findMean':
ans = self.getMeanValue()
elif self.params['action']=='findSTD':
ans = self.getSTD()
ans=self.getSTD()
return ans
def getExtremumValue(self):
"""
Эта функция возвращает экстремум произвольного типа внутри одного столбца
Тип контролируется разделом внутри словаря параметров `self.params` по ключу `actionOptions`:
'extremumtype': -- тип экстремума
ans=None
'''
actionOptions:
'extremumtype':
'min'
'max'
:return ans, экстремум произвольного типа
"""
ans=None
'valueType':
'open'
'close'
'high'
'low'
'''
if self.params['actionOptions']['extremumtype']=='max':
ans=max(self.col)
if self.params['actionOptions']['extremumtype']=='min':
ans=min(self.col)
return ans
def getMeanValue(self):
"""
Божественный код
Эта функция возвращает среднее значение одного из следующих типов.
Для определения типа используется словарь `self.params`, по ключу `actionOptions`, релевантные ключи выглядят
так:
'''
actionOptions:
'MeanType':
'MA' -- среднее по всему столбцу
'SMA' -- скользящее среднее
'EMA' -- экспоненциальное скользящее среднее
'WMA' -- взвешенное скользящее среднее
'window' -- размер окна
'span' -- >=1 , аналог окна для экспоненциального среднего, чем он больше тем меньше коэффициент сглаживания
'weights' -- numpy.ndarray, список размером в параметр `window`, конкретные веса для каждого элемента
"""
'MA'
'SMA'
'EMA'
'WMA'
--'SMMA'
'valueType':
'open'
'close'
'high'
'low'
'window'
'span'
'weights'
'''
ans=None
if self.params['actionOptions']['MeanType']=='MA':
ans = self.col.mean()
if self.params['actionOptions']['MeanType']=='SMA':
ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
#ans=self.col.rolling(window=self.params['actionOptions']['window']).mean().to_list()
if self.params['actionOptions']['MeanType']=='EMA':
ans=self.col.ewm(span=self.params['actionOptions']['span'], adjust=False).mean().to_list()
if self.params['actionOptions']['MeanType']=='WMA':
@@ -97,8 +106,10 @@ class CoreMath:
weights=np.arange(1,self.params['actionOptions']['window']+1)
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False).to_list()
return ans
return(ans)
def getSTD(self):
'''
actionOptions:
@@ -109,7 +120,7 @@ class CoreMath:
'''
ans=None
@@ -117,11 +128,11 @@ class CoreMath:
window=self.params['actionOptions']['window']
ans=np.asarray([])
for i in range(len(self.col)-window+1):
ans=np.append(ans, np.std(self.col[i:i+window], ddof=1))
ans=np.append(ans,np.std(self.col[i:i+window], ddof=1))
except:
#window = len(self.col)
ans=np.std(self.col, ddof=1)
return ans

View File

@@ -0,0 +1,49 @@
import pandas as pd
import datetime
import numpy as np
import uuid
class DealManager():
def __init__(self):
#self.commission=0.04
self.columns=['uuid','figi','amount','startPrice']
self.deals = pd.DataFrame(columns=self.columns)
self.deals = self.deals.set_index('uuid')
def findDealByPriceAndFig(self,price,figi):
ans=None
for i in range(self.deals.shape[0]):
if self.deals.iloc[i].startPrice == price and self.deals.iloc[i].figi == figi:
ans = self.deals.iloc[i].name
break
return ans
def openDeal(self,figi,startPrice,amount=1):
desiredDeal=self.findDealByPriceAndFig(startPrice,figi)
if desiredDeal == None:
newDealDict={
'uuid':[str(uuid.uuid4())],
'figi':[figi],
'startPrice':[startPrice],
'amount':[amount]
}
#newDealDict['profit']=[startPrice*pow(1+self.commission,2)]
newDeal=pd.DataFrame.from_dict(newDealDict).set_index('uuid')
self.deals=pd.concat([self.deals, newDeal])
else:
self.deals.at[desiredDeal,'amount'] += amount
def closeDeal(self,uuid,amount):
desiredDeal=self.deals.loc[uuid]
if desiredDeal.amount - amount == 0:
self.deals = self.deals.drop(labels = [uuid],axis = 0)
else:
self.deals.at[uuid,'amount'] -= amount
#self.deals.loc[uuid].amount = desiredDeal.amount - amount

View File

@@ -0,0 +1,116 @@
import pandas as pd
import datetime
import numpy as np
import pickle
from signals import *
from dealManager import *
from trandeVoter import *
from riskManager import riskManager
class decsionManager():
def __init__(self,name):
self.name = name
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalAgrigator()
pass
#вытащенный из signalAgrigator метод теста для сигналов
def getSignalTest(self,data: pd.DataFrame(),reqSig: dict, batchSize=30, dataType='candel') -> dict:
self.SA.mode = 'retroFast'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#метод для генерации матрицы вероятностей.
def generateMatrixProbability(self,
data: pd.DataFrame(),
reqSig: dict,
target: str,
batchSize=30,
#dataType='candel'
):
data=data.reset_index(drop=True)
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=batchSize
)
self.TV.createMatrixAmounts(reqSig.keys())
for i in range(data.shape[0]-batchSize-1):
sigAns=self.SA.getAns(data[i:i+batchSize])
rightAns=self.getRetroStepAns(data[target][i],data[target][i+1])
self.TV.setDecisionBySignals(self.KostilEbaniy(sigAns),rightAns)
self.TV.generateMatrixProbability()
#без коментариев блять
def KostilEbaniy(self,d):
ans={}
for i in d.keys():
if d[i] == 0:
ans[i] = 'none'
elif d[i] == 1:
ans[i] = 'up'
elif d[i] == -1:
ans[i] = 'down'
return ans
#тож понятная хуита
def getRetroStepAns(self, value1,value2):
if value1 == value2:
ans = 'none'
elif value1 < value2:
ans = 'up'
else:
ans = 'down'
return ans
#метод для онлай получения решения по сигналу
def getSignal(self,data: pd.DataFrame(),reqSig: dict, dataType='candel') -> dict:
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#Создание сигналов. Вызывать перед getOnlineAns
def crateSignals(self,data: pd.DataFrame(),reqSig: dict, dataType='candel'):
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
def getOnlineAns(self,data: pd.DataFrame(),price):
sigAns = self.SA.getAns(data)
prob = self.TV.getDecisionBySignals(sigAns)
ans = self.RM.getDecision(sigAns,prob,price)
return ans

View File

@@ -0,0 +1,161 @@
import os
import pandas as pd
import datetime
import numpy as np
from tqdm import tqdm
from indicators_v2 import *
from signals_v2 import *
from dealManager import *
from trandeVoter import *
from riskManager import *
import pickle
class decsionManager:
'''
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
sigAgrRetroTemplate = {
'sig_BB':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
},
'sig_BB_2':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
}
}
'''
def __init__(self,name, sigDict: dict):
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalsAgrigator(sigDict)
self.sigDict = sigDict
def getOnlineAns(self, signalsAns: dict, price: float) -> dict:
probabilityDecsion = self.TV.getDecisionBySignals(self.getSignalsAns(signalsAns))
RMD = self.RM.getDecision(probabilityDecision=probabilityDecsion, price=price, deals = self.DM.deals)
return RMD
def getSignalsAns(self, signalsDataDict: dict) -> dict:
return self.SA.getAns(signalsDataDict)
def getRightAns(self,value_1, value_2):
ans=''
if value_1 > value_2:
ans = 'down'
elif value_1 < value_2:
ans = 'up'
else:
ans = 'none'
return ans
def getRetroTrendAns(self, retroTemplateDict: dict, data: pd.DataFrame(), window: int) -> list:
reqSig={}
ans = {
'signalsAns':[],
'rightAns':[]
}
target = ''
for k in tqdm(range(data.shape[0]-window-1)):
for i in retroTemplateDict.keys():
reqSig[i] = {'signalData': data[k:k+window], 'indicatorData':{}}
target = self.SA.signals[i].params['target']
for j in retroTemplateDict[i]['indicatorData'].keys():
reqSig[i]['indicatorData'][j] = data[k:k+window]
sigAns = self.getSignalsAns(reqSig)
rightAns = self.getRightAns(data[target][k], data[target][k+1])
ans['signalsAns'].append(sigAns)
ans['rightAns'].append(rightAns)
return ans
def generateMatrixProbabilityFromDict(self, dictSignals: dict) -> dict:
self.TV.createMatrixAmounts(dictSignals['signalsAns'][0].keys())
for i in range(len(dictSignals['signalsAns'])):
self.TV.setDecisionBySignals(signalDecisions = dictSignals['signalsAns'][i],
trande = dictSignals['rightAns'][i])
self.TV.generateMatrixProbability()
def createDump(self,postfix='') -> str:
dataDict = {
'RM':self.RM,
'DM':self.DM,
'TV':self.TV,
'SA':self.SA,
'sigDict':self.sigDict
}
fileName='data_'+postfix+'.pickle'
with open(fileName, 'wb') as f:
pickle.dump(dataDict, f)
return os.path.abspath(fileName)
def loadDump(self,path: str) -> None:
with open(path, 'rb') as f:
dataDict = pickle.load(f)
self.RM = dataDict['RM']
self.DM = dataDict['DM']
self.TV = dataDict['TV']
self.SA = dataDict['SA']
self.sigDict = dataDict['sigDict']

View File

@@ -2,8 +2,8 @@ import pandas as pd
import datetime
import numpy as np
import market_trade.core.CoreTraidMath as CoreTraidMath
import market_trade.core.CoreDraw as CoreDraw
import CoreTraidMath
import CoreDraw
class coreIndicator():
def __init__(self,

View File

@@ -0,0 +1,89 @@
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
class coreIndicator():
def __init__(self,options: dict, dataType: str = None, predictType: str = None, name: str = None):
self.options = options
self.dataType = dataType #ochl
self.predictType = predictType #trend
def getAns(self, data: pd.DataFrame() ):
return "ERROR"
class indicatorsAgrigator:
"""
indicators = {
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
dataDic={
'ind_BB':df_candle[:1000]
}
"""
def __init__ (self,indDict={}):
self.indDict = indDict
self.indInst = {}
self.ans={}
self.createIndicatorsInstance()
def createIndicatorsInstance(self):
for i in self.indDict.keys():
self.indInst[i]=self.indDict[i]['className'](self.indDict[i]['params'])
def getAns(self,dataDict={}):
ans={}
for i in dataDict.keys():
ans[i] = self.indInst[i].getAns(dataDict[i])
return ans
class ind_BB(coreIndicator):
"""
options
MeanType -> SMA
window -> int
valueType -> str: low, high, open, close
kDev -> float
"""
def __init__(self,options: dict,name = None):
super().__init__(
options = options,
dataType = 'ochl',
predictType = 'trend',
name = name
)
def getAns(self, data: pd.DataFrame()):
data=data.reset_index(drop=True)
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(data,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(data,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
self.ans= ans
return ans

View File

@@ -0,0 +1,29 @@
import pandas as pd
import datetime
import numpy as np
import random
class riskManager:
def __init__(self,commision=0.04):
self.commision = commision
pass
def getDecision(self,probabilityDecision, price, deals=None) -> dict:
ans = {}
ans['decision'] = 'none'
if probabilityDecision['trande'] == 'up':
ans['decision'] = 'buy'
ans['amount'] = 1
elif probabilityDecision['trande'] == 'none':
ans['decision'] = 'none'
elif probabilityDecision['trande'] == 'down':
for i in range(deals.shape[0]):
ans['decision'] = 'None'
ans['deals'] = []
row = deals.iloc[i]
if row.startPrice < price*pow(1+self.commission,2):
ans['decision'] = 'sell'
ans['deals'].append(row.name)
return ans

View File

@@ -2,12 +2,11 @@ import pandas as pd
import datetime
import numpy as np
import market_trade.core.CoreTraidMath as CoreTraidMath
import market_trade.core.CoreDraw as CoreDraw
import CoreTraidMath
import CoreDraw
from tqdm import tqdm
from market_trade.core.indicators import *
from indicators import *
class coreSignalTrande():
def __init__(self,
@@ -17,140 +16,133 @@ class coreSignalTrande():
batchSize=None,
indParams=None,
signalParams=None,
# needFig=False,
# showOnlyIndex=False,
# drawFig=False,
# equalityGap=0
):
self.data = data.reset_index(drop=True)
self.onlineData = data.reset_index(drop=True)
self.dataType = dataType
self.mode = mode
self.ans = None
self.softAnalizList = np.asarray([])
self.hardAnalizList = np.asarray([])
self.analizMetrics = {}
self.indParams = indParams
self.signalParams = signalParams
self.batchSize = batchSize
# self.needFig=needFig
# self.showOnlyIndex=showOnlyIndex
# self.drawFig=drawFig
# self.equalityGap=equalityGap
# Роутер получения ответа
def getAns(self, data):
# ans='Error: unknown Mode!'
ans = None
#needFig=False,
#showOnlyIndex=False,
#drawFig=False,
#equalityGap=0
):
self.data=data.reset_index(drop=True)
self.onlineData=data.reset_index(drop=True)
self.dataType=dataType
self.mode=mode
self.ans=None
self.softAnalizList=np.asarray([])
self.hardAnalizList=np.asarray([])
self.analizMetrics={}
self.indParams=indParams
self.signalParams=signalParams
self.batchSize=batchSize
#self.needFig=needFig
#self.showOnlyIndex=showOnlyIndex
#self.drawFig=drawFig
#self.equalityGap=equalityGap
#Роутер получения ответа
def getAns(self,data):
#ans='Error: unknown Mode!'
ans=None
print("Start processing...")
if self.mode == 'online':
ans = self.getOnlineAns(data.reset_index(drop=True))
ans=self.getOnlineAns(data.reset_index(drop=True))
elif self.mode == 'retro':
ans = self.getRetroAns(data)
ans=self.getRetroAns(data)
elif self.mode == 'retroFast':
ans = self.getRetroFastAns(data)
ans=self.getRetroFastAns(data)
print("Processing DONE!")
return ans
# Ретро режим, где расширяется окно добавлением новых элементов
def getRetroAns(self, data):
ans = np.asarray([])
for i in tqdm(range(self.batchSize, len(data) - 1)):
# self.onlineData=self.data[0:i]
#Ретро режим, где расширяется окно добавлением новых элементов
def getRetroAns(self,data):
ans=np.asarray([])
for i in tqdm(range(self.batchSize,len(data)-1)):
#self.onlineData=self.data[0:i]
window_data = data[0:i]
window_data.reset_index(drop=True)
ans = np.append(ans, (self.getOnlineAns(window_data)))
self.ans = ans
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
# Ретро режим, где двигается окно
def getRetroFastAns(self, data):
# print('d - ',data)
ans = np.asarray([])
for i in tqdm(range(len(data) - 1 - self.batchSize)):
# self.onlineData=self.data[i:i+self.batchSize]
window_data = data[i:i + self.batchSize]
# print('win - ',window_data)
#Ретро режим, где двигается окно
def getRetroFastAns(self,data):
#print('d - ',data)
ans=np.asarray([])
for i in tqdm(range(len(data)-1-self.batchSize)):
#self.onlineData=self.data[i:i+self.batchSize]
window_data = data[i:i+self.batchSize]
#print('win - ',window_data)
window_data.reset_index(drop=True)
# print('win - ',window_data)
ans = np.append(ans, (self.getOnlineAns(window_data)))
self.ans = ans
#print('win - ',window_data)
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
# Метод, который будет переопределять каждый дочерний класс
#Метод, который будет переопределять каждый дочерний класс
def getOnlineAns(self):
return 'Error'
def getAnaliz(self):
print("Start analiz...")
for i in (range(len(self.ans))):
sourceValue = self.data[self.signalParams['source']][i + self.batchSize]
targetValue = self.data[self.signalParams['target']][i + self.batchSize + 1]
if (targetValue) > sourceValue:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, 1)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
sourceValue=self.data[self.signalParams['source']][i+self.batchSize]
targetValue=self.data[self.signalParams['target']][i+self.batchSize + 1]
if (targetValue)>sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif (targetValue) < sourceValue:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, 1)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif (targetValue)<sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,1)
print("Analiz DONE!")
return 0
def getMeteixDict(self, d):
def getMeteixDict(self,d):
'''
1 - (сбывшиеся + несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
2 - (сбывшиеся - несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
'''
return {
'1': (d['1'] + d['-1']) / (d['1'] + d['-1'] + d['0']),
'2': (d['1'] - d['-1']) / (d['1'] + d['-1'] + d['0']),
'1':(d['1'] + d['-1']) / (d['1'] + d['-1'] + d['0']),
'2':(d['1'] - d['-1']) / (d['1'] + d['-1'] + d['0']),
}
def getMetrix(self):
softAnalizCount = {'-1': 0, '0': 0, '1': 0}
hardAnalizCount = {'-1': 0, '0': 0, '1': 0}
softAnalizCount = {'-1':0,'0':0,'1':0}
hardAnalizCount = {'-1':0,'0':0,'1':0}
for i in range(len(self.softAnalizList)):
softAnalizCount[str(int(self.softAnalizList[i]))] += 1
hardAnalizCount[str(int(self.hardAnalizList[i]))] += 1
self.analizMetrics = {'softAnaliz': self.getMeteixDict(softAnalizCount),
'hardAnaliz': self.getMeteixDict(hardAnalizCount)
}
softAnalizCount[str(int(self.softAnalizList[i]))]+=1
hardAnalizCount[str(int(self.hardAnalizList[i]))]+=1
self.analizMetrics = {'softAnaliz':self.getMeteixDict(softAnalizCount),
'hardAnaliz':self.getMeteixDict(hardAnalizCount)
}
class signal_BB(coreSignalTrande):
def __init__(self,
data=pd.DataFrame(),
dataType='candel',
@@ -158,37 +150,101 @@ class signal_BB(coreSignalTrande):
batchSize=None,
indParams=None,
signalParams=None,
):
):
super().__init__(
data=data,
dataType=dataType,
mode=mode,
batchSize=batchSize,
indParams=indParams,
signalParams=signalParams,
)
data=data,
dataType=dataType,
mode=mode,
batchSize=batchSize,
indParams=indParams,
signalParams=signalParams,
)
if self.indParams == None:
indParams = {'MeanType': 'SMA', 'window': 15, 'valueType': 'low', 'kDev': 2}
indParams={'MeanType':'SMA','window':15,'valueType':'low','kDev':2}
else:
indParams = self.indParams
self.BB = ind_BB(
indParams=self.indParams
self.BB=ind_BB(
data=data,
options=indParams,
)
def getOnlineAns(self, data):
ans = 0
# print(data)
def getOnlineAns(self,data):
ans=0
#print(data)
self.BB.getAns(data)
# print(BB)
lastValue = data[self.signalParams['source']].to_list()[-1]
if lastValue > self.BB.ans['pSTD'][-1]:
ans = -1
elif lastValue < self.BB.ans['mSTD'][-1]:
ans = +1
#print(BB)
lastValue=data[self.signalParams['source']].to_list()[-1]
if lastValue>self.BB.ans['pSTD'][-1]:
ans=-1
elif lastValue<self.BB.ans['mSTD'][-1]:
ans=+1
else:
ans = 0
ans=0
return ans
class signalAgrigator:
"""
dictAgrigSignal
key - name str
value - dict
className - class
indParams - dict
signalParams - dict
batchSize - int
"""
def __init__(self,
data=pd.DataFrame(),
dictAgrigSignal={},
mode='online',
dataType='candel',
batchSize=None
):
self.createSingnalInstances(
data,
dictAgrigSignal,
dataType,
batchSize
)
self.mode=mode
def createSingnalInstances(
self,
data,
dictAgrigSignal,
dataType,
batchSize
):
ans={}
for i in dictAgrigSignal:
ans[i]=dictAgrigSignal[i]['className'](
data=data,
dataType=dataType,
batchSize=batchSize,
indParams=dictAgrigSignal[i]['indParams'],
signalParams=dictAgrigSignal[i]['signalParams'],
mode=self.mode
)
self.signalsInstances = ans
return ans
def getAns(self, data):
ans={}
if self.mode == 'online':
for i in self.signalsInstances:
ans[i]=(self.signalsInstances[i].getAns(data))
elif self.mode == 'retroFast' or self.mode == 'retro':
for i in self.signalsInstances:
self.signalsInstances[i].getAns(data)
ans[i]=self.signalsInstances[i].analizMetrics
return ans

View File

@@ -0,0 +1,112 @@
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
#import CoreDraw
from tqdm import tqdm
from indicators_v2 import *
class coreSignalTrande:
def __init__(self, name: str, req: dict, dataType: str):
self.name = name
self.agrigateInds = self.createIndicatorsInstance(req)
self.params = req['params']
self.dataType = dataType
def createIndicatorsInstance(self,req: dict) -> dict:
return indicatorsAgrigator(req['indicators'])
def getIndAns(self, dataDict: dict) -> dict:
return self.agrigateInds.getAns(dataDict)
def getAns(self, data: pd.DataFrame(), indDataDict: dict) -> dict:
return self.getSigAns(data, self.getIndAns(indDataDict))
class sig_BB(coreSignalTrande):
"""
ind keys:
ind_BB
"""
def __init__(self, name: str, req:dict):
super().__init__(name, req, 'ochl')
def getSigAns(self, data: pd.DataFrame(), indAnsDict: dict) -> dict:
lastValue = data[self.params['source']].to_list()[-1]
if lastValue>indAnsDict['ind_BB']['pSTD'][-1]:
ans='down'
elif lastValue<indAnsDict['ind_BB']['mSTD'][-1]:
ans='up'
else:
ans='none'
return ans
class signalsAgrigator:
"""
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
"""
def __init__ (self,req:dict):
self.signals = self.createSignalsInstance(req)
def createSignalsInstance(self, siganlsDict: dict) -> dict:
ans = {}
for i in siganlsDict.keys():
ans[i]=siganlsDict[i]['className'](name = i, req = siganlsDict[i])
return ans
def getAns(self, dataDict: dict) -> dict:
ans = {}
for i in dataDict.keys():
ans[i] = self.signals[i].getAns(data = dataDict[i]['signalData'],
indDataDict = dataDict[i]['indicatorData'])
return ans

View File

@@ -0,0 +1,83 @@
import pandas as pd
import datetime
import numpy as np
#import random
class trandeVoter():
def __init__(self,name):
self.name = name # просто имя
self.trandeValuesList = ['up','none','down'] #словарь трегдов
self.matrixAmounts = None # матрица сумм
self.keysMatrixAmounts = None #ключи матрицы сумм, техническое поле
self.matrixProbability = None # матрица вероятностей
#функция которая создает df с заданным набором колонок и индексов. индексы - уникальные соотношения
def createDFbyNames(self, namesIndex, namesColoms,defaultValue=0.0):
df = pd.DataFrame(dict.fromkeys(namesColoms, [defaultValue]*pow(3,len(namesIndex))),
index=pd.MultiIndex.from_product([self.trandeValuesList]*len(namesIndex), names=namesIndex)
#,columns=namesColoms
)
return(df)
#создание матрицы сумм с дефолтным значением
def createMatrixAmounts(self,namesIndex: list) -> pd.DataFrame():
self.matrixAmounts = self.createDFbyNames(namesIndex,self.trandeValuesList,0)
self.keysMatrixAmounts = self.matrixAmounts.to_dict('tight')['index_names']
self.createMatrixProbability(namesIndex)
return(self.matrixAmounts)
#создание матрицы вероятностей с дефолтным значением
def createMatrixProbability(self,namesIndex: list) -> pd.DataFrame():
self.matrixProbability = self.createDFbyNames(namesIndex,self.trandeValuesList)
return(self.matrixProbability)
#установка значений в матрицы сумм. signalDecisions - значения индикаторов key:value; trande - реальное значение
def setDecisionBySignals(self,signalDecisions: dict,trande: str) -> None:
buff=[]
for i in self.keysMatrixAmounts:
buff.append(signalDecisions[i])
self.matrixAmounts.loc[tuple(buff),trande] += 1
#заполнение матрицы вероятностей вычисляемыми значениями из матрицы сумм
def generateMatrixProbability(self) -> None:
for i in range(self.matrixAmounts.shape[0]):
rowSum=sum(self.matrixAmounts.iloc[i])
self.matrixProbability.iloc[i]['up'] = (self.matrixAmounts.iloc[i]['up'] / rowSum)
self.matrixProbability.iloc[i]['none'] = self.matrixAmounts.iloc[i]['none'] / rowSum
self.matrixProbability.iloc[i]['down'] = self.matrixAmounts.iloc[i]['down'] / rowSum
#получение рещения из матрицы вероятностей по заданным значениям сигналов
def getDecisionBySignals(self,signalDecisions: dict) -> dict:
ans = {}
spliceSearch =self.matrixProbability.xs(tuple(signalDecisions.values()),
level=list(signalDecisions.keys())
)
ans['probability'] = spliceSearch.to_dict('records')[0]
ans['trande'] = spliceSearch.iloc[0].idxmax()
return ans
#получение матриц вероятностей и суммы в видей словарей
def getMatrixDict(self) -> dict:
ans={}
ans['amounts'] = self.matrixAmounts.to_dict('tight')
ans['probability'] = self.matrixProbability.to_dict('tight')
return ans
#установка матриц вероятностей и суммы в видей словарей
def setMatrixDict(self,matrixDict: dict) -> dict:
if matrixDict['amounts'] != None:
self.matrixAmounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
if matrixDict['probability'] != None:
self.matrixProbability = pd.DataFrame.from_dict(y['probability'], orient='tight')